Acta Cryst. (1996). C52, 2288-2290

21-Acetoxy-16 α-propionoxy-11 $\beta, 17 \alpha$ -dihydroxypregna-1,4-diene-3,20-dione Monohydrate

Barbara Pniewska, ${ }^{a *}$ Romana Anulewicz ${ }^{b}$ and Teresa Uszycka-Horawa ${ }^{c}$

${ }^{a}$ Department of Chemistry, Agricultural and Teacher University, 3 Maja 54, 08-110 Siedlce, Poland, ${ }^{\text {b }}$ Department of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warszawa, Poland, and ${ }^{\text {'Infarm Co. Ltd, Rydygiera } 8,}$ 01-793 Warszawa, Poland. E-mail: pniew@wsrp.siedlce.pl
(Received 14 November 1995; accepted 19 February 1990)

Abstract

The title steroid derivative, 21 -acetoxy-11 $\beta, 17 \alpha$-di-hydroxy-3,20-dioxopregna-1,4-dienyl 16α-propionate monohydrate, $\mathrm{C}_{26} \mathrm{H}_{34} \mathrm{O}_{8} \cdot \mathrm{H}_{2} \mathrm{O}$, crystallizes in the $P 6_{1}$ space group. The hydrogen-bonded steroid molecules, related by a hexagonal screw axis, form a cylindrical tunnel containing a disordered water chain.

Comment

The title compound, (I), a diester of 16α-hydroxyprednisolone, was prepared by Infarm Co. Ltd as part of a research program based on the synthesis of new corticoid derivatives.

A view of (I) is shown in Fig. 1. The bond lengths and valency angles (Table 2) are within the ranges of mean values for steroid structures (Duax \& Norton, 1975). In the propionate moiety, the C24-C25 and C25-C26 bond lengths are probably affected by the thermal vibrations of the terminal C25 and C26 atoms.

The O 3 atom deviates from the plane of ring A [planar within 0.014 (3) Å] by 0.032 (9) \AA. The plane of ring A and the mean plane through atoms C5-C17 make a dihedral angle of $42.6(2)^{\circ}$ with one another. The distance of atom O 3 from the $\mathrm{C} 5-\mathrm{C} 17$ plane is 2.540 (7) \AA.

Rings B and C both have chair conformations. The asymmetry parameters (Duax \& Norton, 1975) for ring

Fig. 1. A perspective drawing of the title molecule. Non-H atoms are shown as 50% probability displacement ellipsoids.
B are $\Delta C_{s}(10)=2.4(5), \Delta C_{2}(9,10)=2.6(6)$ and $\Delta C_{2}(8,9)=9.8(3)^{\circ}$, and for ring C are $\Delta C_{2}(9,11)=$ $0.9(5), \Delta C_{s}(11)=3.4(4)$ and $\Delta C_{s}(8)=6.7(4)^{\circ}$.

Ring D adopts a slightly deformed half-chair conformation. The C13 and C14 atoms lie on opposite sides of the C15-C17 plane at respective distances of 0.49 (1) and 0.29 (1) \AA. The asymmetry parameter $\Delta C_{2}(16)$ is $3.3(5)^{\circ}$ and the pseudo-rotation parameters Δ and φ (Altona, Geize \& Romers, 1968) are 8.3 (1) and $49.0(2)^{\circ}$, respectively. The ring-junction configurations are quasi-cis for A / B and trans for both B / C and C / D.
The carbonyl O atom of the 17β side chain is oriented above ring D synclinal to the $\mathrm{C} 13-\mathrm{C} 17$ bond; the $\mathrm{C} 13-\mathrm{C} 17-\mathrm{C} 20-\mathrm{O} 20$ torsion angle is $83.5(6)^{\circ}$. Two planar fragments (C17, C20, O20, C21 and O21, C22, O22, C23) make a dihedral angle of 82.3 (3) ${ }^{\circ}$ with one another.

The relative orientation of the 16α side chain with respect to the substituents at C 17 is given by the O 16 $\mathrm{C} 16-\mathrm{C} 17-\mathrm{C} 20, \mathrm{O} 16-\mathrm{C} 16-\mathrm{C} 17-\mathrm{O} 17$ and $\mathrm{O} 16-$ C16-C17-C13 torsion angles, which have values of $-104.9(5), 19.5(6)$ and $134.2(4)^{\circ}$, respectively. The $\mathrm{C} 16, \mathrm{O} 16, \mathrm{C} 24, \mathrm{O} 24, \mathrm{C} 25$ fragment is planar within 0.038 (4) Å.

The most interesting feature of the present study is the molecular arrangement in the hexagonal lattice. A fragment of the crystal packing is shown in Fig. 2. The planar A rings of the steroid molecules form a helical chain around a hexagonal screw axis. The diameter of the hole is $6.7 \AA$ (calculated as the $\mathrm{H} 2 \cdots \mathrm{H} 2$ maximum distance on a projection perpendicular to [001]). Inside the hole, another helical chain is created by the water molecules surrounding the σ_{1} axis, with distances of 2.97 (1) \AA between water O atoms. The refinement part of the structure investigation indicated the strong disorder of the water Ol 100 atoms. The nearest approaches of the water O atoms to the steroid atoms are

Fig. 2. Packing diagram viewed down the c axis. The water O atoms are shown as six circles enclosing the 6_{1} axis. H atoms, except for H110 and H170, have been omitted for clarity.
$\mathrm{O} 3 \cdots \mathrm{O} 100^{\mathrm{i}}$ of 3.15 (3) and $\mathrm{H} 211 \cdots \mathrm{O} 100$ of 2.80 (8) \AA [symmetry code: (i) $-x+y,-x, z+\frac{2}{3}$].
The hexagonal symmetry of the crystals is stabilized by intermolecular hydrogen bonds. The O 17 atom, as both a donor and an acceptor, is hydrogen bonded to the carbonyl O22 atom and the hydroxyl O11H group of adjacent molecules; H170‥O22ii 2.03 (9), $017 \cdots O 22^{\text {ii }} 2.827(5) \AA$ and $\mathrm{O} 17-\mathrm{H} \cdots \mathrm{O} 22^{i i} 164$ (7) ${ }^{\circ}$, and $\mathrm{H} 110 \cdots \mathrm{O} 7^{\mathrm{iii}} 2.11$ (7), O11 \cdots O17 $7^{\mathrm{iii}} 2.928$ (5) \AA and O11—H \cdots O17iii $168(6)^{\circ}$ [symmetry codes: (ii) y, $-x+y, z-\frac{1}{6}$; (iii) $\left.x-y, x, z+\frac{1}{6}\right]$.

Experimental

Crystals of the title compound were obtained by slow evaporation of a $1: 1$ ethanol/tetrachloromethane solution.

Crystal data

$\mathrm{C}_{26} \mathrm{H}_{34} \mathrm{O}_{8} . \mathrm{H}_{2} \mathrm{O}$	$\mathrm{Cu} K \alpha$ radiation
$M_{r}=492.55$	$\lambda=1.54178 \AA$
Hexagonal	Cell parameters from 30
$P 6$	reflections
$a=17.172$ (4) \AA	$\theta=17.6-24.8{ }^{\circ}$
$c=14.965$ (9) \AA	$\mu=0.800 \mathrm{~mm}^{-1}$
$V=3822(3) \AA^{3}$	$T=293$ (2) K
$Z=6$	Transparent needle
$D_{x}=1.284 \mathrm{Mg} \mathrm{m}^{-3}$	$0.65 \times 0.26 \times 0.18 \mathrm{~mm}$
D_{m} not measured	Colorless
Data collection	
Kuma KM-4 four-circle diffractometer	$\begin{aligned} & R_{\text {int }}=0.0277 \\ & \theta_{\text {max }}=80.4^{\circ} \end{aligned}$
ω / θ scans	$h=-18 \rightarrow 0$
Absorption correction: none	$\begin{aligned} & k=0 \rightarrow 21 \\ & l=0 \rightarrow 15 \end{aligned}$
2947 measured reflections	3 standard reflectio
2700 independent reflections	monitored every 100
1874 observed reflections	reflections
$[I>2 \sigma(I)]$	intensity decay: <1\%

Refinement
Refinement on F^{2}
$R(F)=0.0580$
$w R\left(F^{2}\right)=0.1678$
$S=1.005$
2698 reflections
421 parameters
$w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.1141 P)^{2}\right]$
where $P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}=0.098$
$\Delta \rho_{\text {max }}=0.423 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\text {min }}=-0.263 \mathrm{e} \AA^{-3}$

Extinction correction: SHELXL93
Extinction coefficient: 0.0023 (5)

Atomic scattering factors from International Tables for Crystallography (1992, Vol. C, Tables 4.2.6.8 and 6.1.1.4)

Absolute configuration:
Flack (1983) parameter $=-0.2(4)$

Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters (\AA^{2})

$U_{\text {eq }}=(1 / 3) \sum_{i} \Sigma_{j} U_{i j} a_{i}^{*} a_{j}^{*} \mathbf{a}_{i} \cdot \mathbf{a}_{j}$.				
	x	y	z	$U_{\text {eq }}$
O3	0.2256 (4)	0.0201 (3)	1.5285 (4)	0.084 (2)
011	0.2204 (3)	0.3372 (3)	1.2684 (3)	0.054 (1)
016	0.5346 (3)	0.3761 (3)	0.9807 (3)	0.068 (1)
017	0.3580 (3)	0.2669 (2)	0.9915 (2)	0.043 (1)
O 20	0.3757 (3)	0.4741 (3)	0.9331 (3)	0.063 (1)
021	0.2157 (3)	0.3645 (3)	0.8528 (2)	0.054 (1)
022	0.1618 (3)	0.3798 (3)	0.9835 (2)	0.055 (1)
024	0.5338 (4)	0.4358 (3)	0.8516 (3)	0.085 (2)
C1	0.1997 (3)	0.1848 (4)	1.4115 (3)	0.045 (1)
C2	0.1783 (4)	0.1108 (4)	1.4556 (3)	0.053 (1)
C3	0.2472 (5)	0.0919 (4)	1.4891 (4)	0.058 (1)
C4	0.3394 (5)	0.1591 (4)	1.4732 (4)	0.054 (1)
C5	0.3634 (3)	0.2359 (3)	1.4306 (3)	0.042 (1)
C6	0.4596 (3)	0.3049 (4)	1.4127 (4)	0.049 (1)
C7	0.4773 (3)	0.3262 (4)	1.3126 (4)	0.046 (1)
C8	0.4080 (3)	0.3441 (3)	1.2670 (3)	0.035 (1)
C9	0.3123 (3)	0.2689 (3)	1.2884 (3)	0.032 (1)
C10	0.2949 (3)	0.2577 (3)	1.3924 (3)	0.036 (1)
C11	0.2375 (3)	0.2701 (3)	1.2336 (3)	0.036 (1)
C12	0.2577 (3)	0.2805 (3)	1.1337 (3)	0.037 (1)
C13	0.3509 (3)	0.3580 (3)	1.1114 (3)	0.034 (1)
C14	0.4210 (3)	0.3475 (3)	1.1652 (3)	0.036 (1)
C15	0.5099 (3)	0.4192 (4)	1.1246 (4)	0.050 (1)
C16	0.4890 (3)	0.4168 (4)	1.0242 (4)	0.045 (1)
C17	0.3851 (3)	0.3582 (3)	1.0139 (3)	0.036 (1)
C18	0.3568 (4)	0.4492 (3)	1.1294 (4)	0.047 (1)
C19	0.3078 (4)	0.3438 (4)	1.4388 (4)	0.049 (1)
C20	0.3447 (4)	0.3944 (3)	0.9466 (3)	0.044 (1)
C21	0.2607 (5)	0.3250 (4)	0.8994 (4)	0.050 (1)
C22	0.1654 (4)	0.3866 (4)	0.9023 (4)	0.050 (1)
C23	0.1162 (5)	0.4200 (5)	0.8458 (5)	0.062 (2)
C24	0.5569 (4)	0.3940 (4)	0.8955 (4)	0.061 (2)
C25	0.6112 (5)	0.3453 (6)	0.8663 (5)	0.083 (2)
C26	0.6465 (8)	0.3699 (10)	0.7756 (7)	0.122 (4)
O100	0.0663 (11)	0.1072 (13)	0.965 (2)	0.37 (2)

Table 2. Selected geometric parameters $\left(\AA^{\circ},^{\circ}\right)$

$\mathrm{O} 3-\mathrm{C} 3$	$1.244(7)$	$\mathrm{C} 8-\mathrm{C} 9$	$1.534(6)$
$\mathrm{O} 11-\mathrm{C} 11$	$1.422(6)$	$\mathrm{C} 8-\mathrm{C} 14$	$1.536(7)$
$\mathrm{O} 16-\mathrm{C} 24$	$1.322(8)$	$\mathrm{C} 9-\mathrm{C} 11$	$1.533(6)$
$\mathrm{O} 16-\mathrm{C} 16$	$1.440(6)$	$\mathrm{C} 9-\mathrm{C} 10$	$1.578(6)$
$\mathrm{O} 17-\mathrm{C} 17$	$1.434(5)$	$\mathrm{C} 10-\mathrm{C} 19$	$1.547(7)$
$\mathrm{O} 20-\mathrm{C} 20$	$1.212(6)$	$\mathrm{C} 11-\mathrm{C} 12$	$1.525(7)$
$\mathrm{O} 21-\mathrm{C} 22$	$1.329(6)$	$\mathrm{C} 12-\mathrm{C} 13$	$1.521(6)$
$\mathrm{O} 21-\mathrm{C} 21$	$1.437(6)$	$\mathrm{C} 13-\mathrm{C} 14$	$1.532(6)$
$\mathrm{O} 22-\mathrm{C} 22$	$1.221(7)$	$\mathrm{C} 13-\mathrm{C} 18$	$1.541(6)$
$\mathrm{O} 24-\mathrm{C} 24$	$1.179(8)$	$\mathrm{C} 13-\mathrm{C} 17$	$1.572(6)$
$\mathrm{C} 1-\mathrm{C} 2$	$1.312(8)$	$\mathrm{C} 14-\mathrm{C} 15$	$1.529(7)$
$\mathrm{C} 1-\mathrm{C} 10$	$1.509(7)$	$\mathrm{C} 15-\mathrm{C} 16$	$1.541(8)$
$\mathrm{C} 2-\mathrm{C} 3$	$1.463(9)$	$\mathrm{C} 16-\mathrm{C} 17$	$1.556(7)$
$\mathrm{C} 3-\mathrm{C} 4$	$1.438(9)$	$\mathrm{C} 17-\mathrm{C} 20$	$1.521(7)$
$\mathrm{C} 4-\mathrm{C} 5$	$1.331(7)$	$\mathrm{C} 20-\mathrm{C} 21$	$1.511(8)$

$\mathrm{C} 5-\mathrm{C} 6$	$1.499(8)$	$\mathrm{C} 22-\mathrm{C} 23$	$1.496(8)$
$\mathrm{C} 5-\mathrm{C} 10$	$1.514(7)$	$\mathrm{C} 24-\mathrm{C} 25$	$1.592(11)$
$\mathrm{C} 6-\mathrm{C} 7$	$1.536(8)$	$\mathrm{C} 25-\mathrm{C} 26$	$1.459(12)$
$\mathrm{C} 7-\mathrm{C} 8$	$1.530(7)$		
$\mathrm{C} 24-\mathrm{O} 16-\mathrm{C} 16$	$119.3(5)$	$\mathrm{C} 12-\mathrm{C} 13-\mathrm{C} 18$	$110.9(4)$
$\mathrm{C} 22-\mathrm{O} 21-\mathrm{C} 21$	$116.4(4)$	$\mathrm{C} 14-\mathrm{C} 13-\mathrm{C} 18$	$111.8(4)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 10$	$124.1(5)$	$\mathrm{C} 12-\mathrm{C} 13-\mathrm{C} 17$	$115.8(4)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$121.5(6)$	$\mathrm{C} 14-\mathrm{C} 13-\mathrm{C} 17$	$99.9(3)$
$\mathrm{O} 3-\mathrm{C} 3-\mathrm{C} 4$	$122.5(6)$	$\mathrm{C} 18-\mathrm{C} 13-\mathrm{C} 17$	$109.0(4)$
$\mathrm{O} 3-\mathrm{C} 3-\mathrm{C} 2$	$120.5(6)$	$\mathrm{C} 15-\mathrm{C} 14-\mathrm{C} 13$	$102.9(4)$
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 2$	$117.0(5)$	$\mathrm{C} 15-\mathrm{C} 14-\mathrm{C} 8$	$119.5(4)$
$\mathrm{C} 5-\mathrm{C} 4-\mathrm{C} 3$	$123.0(6)$	$\mathrm{C} 13-\mathrm{C} 14-\mathrm{C} 8$	$114.7(4)$
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$	$122.8(5)$	$\mathrm{C} 14-\mathrm{C} 15-\mathrm{C} 16$	$103.9(4)$
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 10$	$122.2(5)$	$\mathrm{O} 16-\mathrm{C} 16-\mathrm{C} 15$	$106.1(4)$
$\mathrm{C} 6-\mathrm{C} 5-\mathrm{C} 10$	$114.9(4)$	$\mathrm{O} 16-\mathrm{C} 16-\mathrm{C} 17$	$111.6(4)$
$\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 7$	$111.8(4)$	$\mathrm{C} 15-\mathrm{C} 16-\mathrm{C} 17$	$106.9(4)$
$\mathrm{C} 8-\mathrm{C} 7-\mathrm{C} 6$	$113.7(4)$	$\mathrm{O} 17-\mathrm{C} 17-\mathrm{C} 20$	$109.1(4)$
$\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 9$	$110.6(4)$	$\mathrm{O} 17-\mathrm{C} 17-\mathrm{C} 16$	$111.7(4)$
$\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 14$	$109.8(4)$	$\mathrm{C} 20-\mathrm{C} 17-\mathrm{C} 16$	$114.2(4)$
$\mathrm{C} 9-\mathrm{C} 8-\mathrm{C} 14$	$108.3(4)$	$\mathrm{O} 17-\mathrm{C} 17-\mathrm{C} 13$	$107.4(4)$
$\mathrm{C} 11-\mathrm{C} 9-\mathrm{C} 8$	$115.4(4)$	$\mathrm{C} 20-\mathrm{C} 17-\mathrm{C} 13$	$111.6(4)$
$\mathrm{C} 11-\mathrm{C} 9-\mathrm{C} 10$	$114.9(4)$	$\mathrm{C} 16-\mathrm{C} 17-\mathrm{C} 13$	$102.5(4)$
$\mathrm{C} 8-\mathrm{C} 9-\mathrm{C} 10$	$111.5(4)$	$\mathrm{O} 20-\mathrm{C} 20-\mathrm{C} 21$	$121.3(5)$
$\mathrm{C} 1-\mathrm{C} 10-\mathrm{C} 5$	$112.1(4)$	$\mathrm{O} 20-\mathrm{C} 20-\mathrm{C} 17$	$122.7(5)$
$\mathrm{C} 1-\mathrm{C} 10-\mathrm{C} 19$	$106.5(4)$	$\mathrm{C} 21-\mathrm{C} 20-\mathrm{C} 17$	$116.0(4)$
$\mathrm{C} 5-\mathrm{C} 10-\mathrm{C} 19$	$108.0(4)$	$\mathrm{O} 21-\mathrm{C} 21-\mathrm{C} 20$	$112.4(5)$
$\mathrm{C} 1-\mathrm{C} 10-\mathrm{C} 9$	$110.4(4)$	$\mathrm{O} 22-\mathrm{C} 22-\mathrm{O} 21$	$122.3(5)$
$\mathrm{C} 5-\mathrm{C} 10-\mathrm{C} 9$	$106.3(4)$	$\mathrm{O} 22-\mathrm{C} 22-\mathrm{C} 23$	$126.1(5)$
$\mathrm{C} 19-\mathrm{C} 10-\mathrm{C} 9$	$113.5(4)$	$\mathrm{O} 21-\mathrm{C} 22-\mathrm{C} 23$	$111.6(5)$
$\mathrm{O} 11-\mathrm{C} 11-\mathrm{C} 12$	$113.0(4)$	$\mathrm{O} 24-\mathrm{C} 24-\mathrm{O} 16$	$122.1(6)$
$\mathrm{O} 11-\mathrm{C} 11-\mathrm{C} 9$	$109.2(4)$	$\mathrm{O} 24-\mathrm{C} 24-\mathrm{C} 25$	$129.1(6)$
$\mathrm{C} 12-\mathrm{C} 11-\mathrm{C} 9$	$112.5(4)$	$\mathrm{O} 16-\mathrm{C} 24-\mathrm{C} 25$	$108.8(6)$
$\mathrm{C} 13-\mathrm{C} 12-\mathrm{C} 11$	$113.4(4)$	$\mathrm{C} 26-\mathrm{C} 25-\mathrm{C} 24$	$111.8(8)$
$\mathrm{C} 12-\mathrm{Cl} 13-\mathrm{C} 14$	$109.0(4)$		

The structure of the title compound was solved by direct methods in the $P 6_{1}$ and $P 6_{5}$ space groups. Each of the E maps revealed all the non-H atoms of the steroid molecule and a low additional peak for the second molecule. Initial isotropic and anisotropic refinement cycles for only the steroid molecule gave a high final R value of 0.071 , a peak of $1.17 \mathrm{e}_{\AA^{-3}}$ near the 6_{1} axis on the difference map, large e.s.d.'s for the positional parameters and significant differences between observed and calculated structure factors for a few reflections with small indices. All parameters were corrected after the setting of the peak by the O atom, with a site occupancy factor of 1 , before isotropic refinement. As the presence of water molecules in the ratio $1: 1$ was confirmed by elemental analysis of the crystal, the water O atoms must be strongly disordered. The calculated percentage content of carbon is 65.8% for the unsolvated compound and 63.4% for the monohydrate compound, while the amount of carbon found was $63.6(3) \%$. A similar problem with the hexagonal molecular arrangement has been discussed for the structure of avarol (Puliti, De Rosa \& Mattia, 1994). The water H atoms could not be located from the difference maps. The alkyl H atoms at the C23, C25 and C26 atoms were fixed geometrically with riding models and $U=1.2 U_{\text {eq }}(\mathrm{C})$. All other H atoms were located from the difference Fourier map and refined isotropically. The absolute structure was assigned to agree with the known configuration of the main steroid skeleton in the $P 6_{1}$ space group. Parallel refinement of the unsuitable enantiomer in the $P 6_{5}$ space group gave the same $R=0.058$ and $w R=0.1477$ values as for the $P 6_{1}$ group.

Data collection: Kuma KM-4 Software (Kuma, 1991). Cell refinement: Kuma KM-4 Software. Data reduction: Kuma KM-4 Software. Program(s) used to solve structure: SHELXS86 (Sheldrick, 1990a). Program(s) used to refine structure: SHELXL93 (Sheldrick, 1993). Molecular graphics:

SHELXTLPC (Sheldrick, 1990b). Software used to prepare material for publication: SHELXL93.

The authors wish to express their thanks to Professor Z. Gałdecki for his kind consent to use the SHELXTL program for creating drafts. The crystallographic studies were supported by Grant No. 2 P303 07707 from the Polish State Committee for Scientific Research.

Lists of structure factors, anisotropic displacement parameters, H atom coordinates, complete geometry and torsion angles have been deposited with the IUCr (Reference: KAll73). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CHI 2HU, England.

References

Altona, C., Geise, H. J. \& Romers, C. (1968). Tetrahedron. 34, 13-32.
Duax, W. L. \& Norton, D. A. (1975). In Atlas of Steroid Structure, Vol. I. New York: Plenum.
Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Kuma (1991). Kuma KM-4 Software. Version 5.0. Kuma Diffraction, Wrocław, Poland.
Puliti, R., De Rosa, S. \& Mattia, C. A. (1994). Acta Cryst. C50, 830-833.
Sheldrick, G. M. (1990a). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1990b). SHELXTLPC User Manual. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.

Acta Cryst. (1996). C52, 2290-2292

($\boldsymbol{R}_{\mathrm{S}}$)-4-p-Toluenesulfinylcyclohexa-1,4-dienecarboxylic Acid Ethyl Ester

R. Retoux, ${ }^{a}$ J. Molenkamp, ${ }^{b}$ E. Bonfand b P. Gosselin ${ }^{b}$ and C. Maignan ${ }^{b}$
${ }^{a}$ Laboratoire des Fluorures - URA 449 Faculté des Sciences, Université du Maine, 72017 Le Mans Cedex, France, and
${ }^{b}$ Laboratoire de Synthèse Organique - URA 482 Faculté des Sciences, Université du Maine, 72017 Le Mans Cedex,
France. E-mail: retoux@fluo.univ-lemans.fr

(Received 16 February 1996; accepted 2 May 1996)

Abstract

The structure determination of $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{O}_{3} \mathrm{~S}$ by singlecrystal X-ray diffraction revealed the para regiochemistry of the title compound.

Comment

In connection with our interest in using chiral sulfoxides in asymmetric synthesis, we have studied both the reactivity and selectivity of enantiopure sulfinyl heterodiene

